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Domain Adaptation for Data-Driven Fault Diagnosis
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Success of Data-driven Methods on General Tasks

14.09.2020 2VQA: Goyal, Yash, et al. "Making the V in VQA matter: Elevating the role of image understanding in Visual Question Answering." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.
Detection: https://github.com/facebookresearch/detectron2
Eye: https://deepmind.com/blog/article/moorfields-major-milestone

Detection and segmentationImage classification

Machine Translation Eye disease diagnosis
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Success of Data-driven Methods on Industrial Applications
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DeepMind Reduces Google Data Centre’s Cooling Bill by 40%

https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/
http://journal.jp.fujitsu.com/en/2017/04/19/01/

Fujitsu reduces development time of parts assembly 
machines by 80% while maintaining recognition rates of 

97%+
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• Data hungry models
• Requires a huge amount of labeled data 
• Popular ResNet-50:  ~25M parameters
• Representativeness matters a lot
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Potential Problem

He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
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What will happen if training data are 
not representative?
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• Significant Performance Drop
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What will happen if training data is not representative?

?

Training Source Domain                                                                Target Domain

amazon.com webcam

SVM accuracy: 54% SVM accuracy: 20%

Hoffman, Judy, et al. "Discovering latent domains for multisource domain adaptation." European Conference on Computer Vision. Springer, Berlin, Heidelberg, 2012.
Torralba, Antonio, and Alexei A. Efros. "Unbiased look at dataset bias." CVPR 2011. IEEE, 2011.
BDD100K: A Large-scale Diverse Driving Video Database https://bair.berkeley.edu/blog/2018/05/30/bdd/
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More Problems for Fault Diagnosis in the Wild

BDD100K: A Large-scale Diverse Driving Video Database https://bair.berkeley.edu/blog/2018/05/30/bdd/

Source Machine 
• Well studied
• Well labeled
• We trained a model !

• Newly setup, Not yet labeled
• Different operating conditions
• Non-identical component

Source data cannot represent target machine well,

the trained model from source suffers performance deterioration

Target Machine 
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Domain Shift - Target domain different from Source domain 

Source Target
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Domain Adaptation (DA)

Labeled Source Domain       Unlabeled Target Domain                             Adapted Domain                           



||Intelligent Maintenance Systems
ETH Zürich 14.09.2020 10

How can we achieve this adaptation?
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ClassifierFeature Extractor

Start from a Basic Network[14]
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How should we add

domain adaptation ability
to this network?

Align distributions in intermediate layers

[14] X. Li, W. Zhang, and Q. Ding, “Cross-domain fault diagnosis of rolling element bearings using deep generative neural networks,” IEEE Transactions on Industrial Electronics, 2018.
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ClassifierFeature extractor

Adaptive Batch Normalization (AdaBN)
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Keep different batch norm statistics 
for source and target.

• Pros
Simplicity. 

• Cons
Performance not optimized

Layer wise adaptation by matching statistics

Li, Yanghao, et al. "Adaptive batch normalization for practical domain adaptation." Pattern Recognition 80 (2018): 109-117.
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can we adapt between domains via

Backpropagation?

AdaBN adapts via statistics,
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Explicitly model the source-target discrepancy!

Gretton, Arthur, et al. "A kernel two-sample test." Journal of Machine Learning Research 13.Mar (2012): 723-773.
Dino Sejdinovic, Inference with Kernel Embeddings, RSS Conference, Manchester

Off-the-shelf solution: Maximum Mean Discrepancy (MMD)
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• Pros
Finer alignment.

• Cons
Multiple kernels needed 
model complexity O(𝒏𝒏𝟐𝟐)

Maximum Mean Discrepancy Minimization 
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MMD as an additional loss to minimize.

Directly minimize the discrepancy between 
source and target features. 

X. Li, W. Zhang, Q. Ding, and J.-Q. Sun, “Multi-layer domain adaptation method for rolling bearing fault diagnosis,” Signal Processing, vol. 157, pp. 180–197, 2019.

Shared

Source Feature Extractor

Target Feature Extractor

Classifier

MMD
Minimize
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Explicit discrepancy modelling is expensive,

alternative cheaper solution?

O(𝒏𝒏𝟐𝟐)
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Adversarial Training

https://github.com/devnag/pytorch-generative-adversarial-networks
Karras, Tero, Samuli Laine, and Timo Aila. "A style-based generator architecture for generative adversarial networks." CVPR. 2019.

StyleGANGAN



||Intelligent Maintenance Systems
ETH Zürich 

Domain-Adversarial Training (DANN)
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Discriminator

Feature extractor

Same as before
Minimize Classification Loss

Classifier

Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropagation,” arXiv preprint arXiv:1409.7495, 2014
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Domain-Adversarial Training (DANN)
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Train a discriminator to 
tell target from source

Minimize Discriminator loss w.r.t 
discriminator weights

Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropagation,” arXiv preprint arXiv:1409.7495, 2014

Feature extractor

Discriminator

Classifier
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Domain-Adversarial Training (DANN)
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Encourage the feature extractor to 
fool the discriminator,
and generate unbiased features

Maximize Discriminator loss w.r.t 
feature extractor weightsFeature extractor

Discriminator

Classifier

Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropagation,” arXiv preprint arXiv:1409.7495, 2014
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Adversarial Training! 

“What you saw is not what you get” Domain adaptation for deep learning, Kate Saenko
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Classifier

Domain-Adversarial Training (DANN)
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Proved to be able to implicitly
reduce H-Divergence
between source and target 
distributions.

Adversarial training by simply using 
Gradient Reverse Layer (GRL) ! 

Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropagation,” arXiv preprint arXiv:1409.7495, 2014

O(𝒏𝒏𝟏𝟏) instead of O(𝒏𝒏𝟐𝟐)



||Intelligent Maintenance Systems
ETH Zürich 

• Dataset information
• Ten Classes classification

• Domain adaptation to a new operating condition
Diagnosing faults on the unlabelled target bearing under a different load.

Case Study on CWRU(Case Western Reserve University) Bearing Dataset

14.09.2020 23Data: http://csegroups.case.edu/bearingdatacenter/home
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Model Performance on CWRU Dataset 
• Same basic architecture
• Same budget for hyper-parameter tuning
• Same optimizer and learning rate

Average Accuracy over 5 runs, trained on a NVIDIA GTX 1080 
Wang, Qin, Gabriel Michau, and Olga Fink. "Domain adaptive transfer learning for fault diagnosis." 2019 Prognostics and System 
Health Management Conference (PHM-Paris). IEEE, 2019.
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Model Efficiency: Training Time

Linear              Linear Quadratic               Linear  

w.r.t. # training samples 
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Quick Summary

• All domain adaptation methods managed to improve the model performance.

• The adversarial method provided competitive results using significantly less training time.

• AdaBN is fast but performs worse than other two. 
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Domain Adaptation for Fault Diagnosis

BDD100K: A Large-scale Diverse Driving Video Database https://bair.berkeley.edu/blog/2018/05/30/bdd/

Source Machine 
• Newly setup, Not yet labeled
• Different operating conditions
• Non-identical component

Have we solved the problem?

Target Machine 
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Until now, full access to target faults is assumed,

but some faults are rare.
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Missing-Class Aware Adaptation

Most faults are rare !
2020/9/14Qin Wang 29

Source 
- Train
Healthy

Fault 1

Fault 2

Fault 3

Fault x

Target -
Train
Unknown

Unknown

Unknown

Target -
Test
Healthy

Fault 1

Fault 2

Fault 3

Fault x

DA for Fault Diagnosis
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Missing Classes Have an Effect: A MNIST example

Source 
- Train
Healthy

Fault 1

Fault 2

Fault 3

Fault …

Target -
Train
Unknown

Unknown

Target -
Test
Healthy

Fault 1

Fault 2

Fault 3

Fault …

Missing-class DA with 10 classes  

Aligning Complete Source with 
Partial Target is Wrong
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Missing Classes Have an Effect: A MNIST example

Part of Target Features

are aligned with 

Complete source data 

Feature Visualization on DANN Method

A good alignment should see red 
overlap with blue on all classes.
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Wrong Alignment Due to Missing Classes

DANN (Ganin et al 2016) performance on MNIST->MNIST-M task. 

Discriminability is hurt
because of misalignment. 
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How can we 
preserve discriminability 
learned from source domain?
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Our Proposed Method: Unilateral vs Bilateral
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Preserve discriminability learn from source by unilateral alignment

Stage 1
• Train a source feature extractor 
• Learn discriminability from 

source
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Preserve discriminability learn from source by unilateral alignment

Stage 2
• Make use of this additional info to 

construct a consistency loss

• Final loss contains three parts.
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Evaluation
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Better alignment in case of missing faults
One step closer to

DA for fault diagnosis in the wild.
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• From one operating condition to another

• From one manufacturer to another

Future Applications 

• From one machine to a fleet
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 Domain Adaptation is almost ready for real life industry applications.

Take-home Message

More about our projects on domain adaptation:

https//ims.ibi.ethz.ch
https://qin.ee 
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