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Future of Bearing Health Diagnostics and Prognostics
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Future of Bearing Health Diagnostics and Prognostics
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Full lifecycle bearing health state estimation

Defect severity estimation
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Defect initiation

https://evolution.skf.com/bearing-life-statistics/



Full lifecycle bearing health state estimation

Defect severity estimation
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Beyond vibration: the sensor roller

https://evolution.skf.com/raising-the-bar-for-collecting-bearing-data/



Full lifecycle bearing health state estimation

Defect severity estimation
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Vibration



DEEP LEARNING & VIBRATION ANALYSIS:
CHALLENGES AND OPPORTUNITIES



Vibration-based damage severity estimation

• Can we estimate the spall size based on vibration signals?

• Many applications can tolerate large spalls

• Spall growth is steady, small step to prognostics

• Vibration sensors are sensitive in this range
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Challenge with vibration-based spall size estimation

• Two clear separate pulses for rolling in/out based on dynamic modeling

• However, these events are hardly visible in customer applications!



Potential of deep learning

• Very good performance on CWRU-dataset

• CWRU dataset lacks clear roll in-out 
features

• What are these methods learning?

Zhang et al. Deep Learning Algorithms for Bearing Fault Diagnostics—
A Comprehensive Review, 2020, IEEE Access , Vol. 8



Interpretation of Deep Learning Models in Bearing Fault Diagnosis

• We used attention visualization (Grad-CAM) 
and signal transformations to investigate 
what the model learns*

• Conclusion: 

• All temporal information can be removed 
without major impact on results

• Transfer function is used for classification 

• Methods are not expected to generalize

*Liefstingh at al. “Interpretation of Deep Learning Models in Bearing Fault
Diagnosis”, 2021, Annual Conference of the PHM Society

*Selvaraju et al. Grad-CAM: Visual Explanations from Deep Networks via 
Gradient-Based Localization , 2019, International Journal of Computer Vision

• Can we get better datasets?
• Not so easy
• Synthetic data?



Synthetic defect data augmentation framework
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Example

Time domain Frequency domain
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Customer data (Wind): Bearing defect identification
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Note: This method predicts defect class, 
not severity yet.

*Wang, Qin, Cees Taal, and Olga Fink. "Integrating expert knowledge with domain 

adaptation for unsupervised fault diagnosis." IEEE Transactions on Instrumentation and 

Measurement 71 (2021): 1-12.



SUMMARY AND FUTURE WORK



Summary and future work

• Vibration-based severity estimation outside “the 
lab” is challenging

• Rolling in/out features not clearly present in 
“real” customer data

• Deep learning methods are sensitive for 
learning spurious correlations

• Augmenting clean sensor data with synthetic 
defects looks promising

• Need of transfer learning methods to close 
domain gap between real-synthetic

• Future: Extend to severity estimation   




