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Success of Data-driven Methods for General Tasks

Image classification Detection and segmentation
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Success of Data-driven Methods on Maintenance Applications

« Detection, Diagnostics, RUL Prediction, etc.
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Success of Data-driven Methods on Maintenance Applications

« Detection, Diagnostics, RUL Prediction, etc.
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Success of Data-driven Methods on Maintenance Applications

« Detection, Diagnostics, RUL Prediction, etc.

* From one operating condition to another
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Success of Data-driven Methods on Maintenance Applications

« Detection, Diagnostics, RUL Prediction, etc.
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Type of Problem Addressed

Predict the remaining useful life
Anticipate the failure

Reduce the impact of the failure

Determine the optimal point in time
for maintenance intervention
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Type of Problem Addressed

Predict the remaining useful life
Anticipate the failure
Reduce the impact of the failure

Determine the optimal point in time
for maintenance intervention

What can we do to prolong the
remaining useful life?

How can we proactively adjust the
operating conditions?

How can we control the process
parameters?
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Type of Problem Addressed
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Type of Problem Addressed

« Sequential decision-making

Intelligent Maintenance Systems
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Reinforcement Learning

Reinforcement Learning

state reward
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action

Supervised
Learning

Unsupervised
Learning

Machine
\ Learning

Reinforcement
Learning
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Reinforcement Learning
"_J AgentI

)

s, | & %

Rz+1 ( .
< Environment

What makes reinforcement learning different from other machine learning
paradigms?

* There is no supervisor, only a reward signal

» Feedback may be delayed, not instantaneous

« Time really matters (sequential, non i.i.d data)

« Agent’s actions affect the subsequent data it receives

Intelligent Maintenance Systems



Reinforcement Learning

What makes reinforcement learning different from other machine learning
paradigms?

* There is no supervisor, only a reward signal

« Feedback may be delayed, not instantaneous

« Time really matters (sequential, non i.i.d data)

« Agent’s actions affect the subsequent data it receives

! .
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Current Success

 Deepmind Al Reduces Google Data Centre Cooling Bill by 40%
» Successful system management

OpenAl Dota 2 Al defeated the world’s top professional team
« Capturing the messiness and continuous nature of the real world

 Ability to solve long time horizons, partially-observed state, high-dimensional
continuous action/state space problems

 End-to-End

ETH Anymal legged robot
* Real-world control task

Deepmind Alpha Zero
« Without human knowledge

AutoML
« Automated optimization
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Current Success
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Current Success

Deepmind Al Reduces Google Data Centre Cooling Bill by 40%
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Current Success

Deepmind Al Reduces Google Data Centre Cooling Bill by 40%
» Successful system management
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Current Success

 Deepmind Al Reduces Google Data Centre Cooling Bill by 40%
» Successful system management
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Prescriptive Maintenance

System mtegr?}tlon level / Process Optimization \

Distributed
System

(Re)Planning

4 N
[ Equipment J Operation Maintenance
~ AN
-
[ Component J (Re-)Calibration
\ N

v

ms S min hour day Time
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Prescriptive Maintenance
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Case study | : Power Allocation

Electric
Vehicles

Space
Exploration

Intelligent Maintenance Systems

Personal
Mobility

Electronic
Devices
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Challenge

Intelligent Maintenance Systems
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Challenge

« How to smartly distribute the load demand in order to
prolong the working cycle?

Battery 1 Battery 2
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Proposed Framework

t=ti - = U=ty

A

S . ~
7 \
m Current-Voltage

Input Information

m Current-Voltage m Current-Voltage

Multi-batteries device

Distribute the Load
30% 31%

23%
16% '

C

I 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
I |
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
L t
| 1

o
-
]

Maximizes the life-cycle of the battery pack
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Results

On Average, the working cycle of the deployed system prolongs 15.2%
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Results
On Average, the working cycle of the deployed system prolongs 31.9%
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Results
On Average, the working cycle of the deployed system prolongs 151.9%
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Advantages

End-to-End
Scalable A

t=t;4 t=t; t=ti41

Global optimization [ e | - ) lm
e e

Input Information

Without Prior Knowledge

Distribute the Load
30% 31%
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Maximizes the life-cycle of the battery pack
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Advantages

End-to-End

Scalable

Global optimization
Without Prior Knowledge
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Advantages

End-to-End

Scalable

Global optimization
Without Prior Knowledge
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| Current-Voltage : m Current-Voltage
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Input Information |

Qes the life-cycle of the battery pack
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Prescriptive Maintenance
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Case study Il : Real-time Model Calibration

Expected
Model L TSGR,
Response

D

ssssss
sssssssss

Reality Gap

=

Observations

Real Process

... bridging the reality gap is a general (and very important) problem in science
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Challenge

« Real-time
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Proposed Framework

Model
Parameters

Physics-based
System Model

Q
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Policy Network

Deep Neural

Real Process Network
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Tracking Problem

* Observe the trajectory or move of the front car (real assets output)
Controlling the steering wheel (degradation parameters)

Try to follow the front car (fill the reality gap)

Once tracked (Calibrated)

Inverse problem

Intelligent Maintenance Systems



Results

Unscented Kalman Filter
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Results

Unscented Kalman Filter Regression
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Results

Unscented Kalman Filter Regression RL
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| 40
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Advantages

End-to-End

Scalable

Without labeled data

Robust to sensor noise and model bias
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Take-nome message

How can we
make it happen?

What will Prescriptive
happen? Analytics

What Predictive
happened? Analytics

Value

Descriptive
Analytics

Difficulty
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Take-home message

—

Preventive Maintenance
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Take-home message

—

Preventive Maintenance

Predictive Maintenance
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Take-nome message

—

Prescriptive Maintenance

Preventive Maintenance

Predictive Maintenance
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Take-home message

* Reinforcement learning is a promising alternative in
maintenance domain, especially for prescriptive operation.

Intelligent Maintenance Systems



Q&A

Thanks for your attention




Case study | : Power Allocation

» Dirichlet Soft Actor-Critic (DSAC) compared with the SOTA

« Soft Actor-Critic(SAC)
» Deep Deterministic Policy Gradient (DDPG)

Intelligent Maintenance Systems

Test Return
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48



Method

UKF

E2E

CLAC

Intelligent Maintenance Systems

Case Study #1
3.42e-04
1.36e-03

3.30 + 0.38e-04

Case Study #2

3.51e-03

2.50e-03

(2]
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Case study Il : Real-time Model Calibration
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