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Success of Data-driven Methods for General Tasks
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Success of Data-driven Methods on Maintenance Applications

• Detection, Diagnostics, RUL Prediction, etc.
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Type of Problem Addressed

Predict the remaining useful life

Anticipate the failure

Reduce the impact of the failure

Determine the optimal point in time 
for maintenance intervention

What can we do to prolong the
remaining useful life?

How can we proactively adjust the
operating conditions?

How can we control the process
parameters?
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Type of Problem Addressed
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Type of Problem Addressed

• Sequential decision-making
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Reinforcement Learning

Reinforcement Learning
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Reinforcement Learning

What makes reinforcement learning different from other machine learning 
paradigms? 

• There is no supervisor, only a reward signal
• Feedback may be delayed, not instantaneous
• Time really matters (sequential, non i.i.d data)
• Agent’s actions affect the subsequent data it receives 
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Current Success

• Deepmind AI Reduces Google Data Centre Cooling Bill by 40% 

• Successful system management 

• OpenAI Dota 2 AI defeated the world’s top professional team 

• Capturing the messiness and continuous nature of the real world

• Ability to solve long time horizons, partially-observed state, high-dimensional 
continuous action/state space problems 

• End-to-End

• ETH Anymal legged robot 

• Real-world control task 

• Deepmind Alpha Zero 

• Without human knowledge

• AutoML
• Automated optimization 
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Case study I : Power Allocation

Electric
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Challenge
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Challenge

• How to smartly distribute the load demand in order to 
prolong the working cycle?  
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Proposed Framework

[2]
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Results

On Average, the working cycle of the deployed system prolongs 15.2%
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Results

[2]

On Average, the working cycle of the deployed system prolongs 31.9%
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Results

[2]

151 

On Average, the working cycle of the deployed system prolongs 151.9%
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Advantages

• End-to-End

• Scalable

• Global optimization

• Without Prior Knowledge
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Case study II : Real-time Model Calibration

Real Process

Computer Model

R
ea

lit
y 

G
a

p

Expected 
Model  

Response

Observations

… bridging the reality gap is a general (and very important) problem in science
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Challenge

• Real-time
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Proposed Framework

[2]
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Tracking Problem

• Observe the trajectory or move of the front car (real assets output)

• Controlling the steering wheel (degradation parameters)

• Try to follow the front car (fill the reality gap)

• Once tracked (Calibrated)

• Inverse problem
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Results

Unscented Kalman Filter
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Results

Unscented Kalman Filter Regression
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Results

Unscented Kalman Filter Regression RL

Reg RL
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Advantages

• End-to-End

• Scalable

• Without labeled data

• Robust to sensor noise and model bias
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Take-home message
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Take-home message

Preventive Maintenance
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Take-home message

Preventive Maintenance Predictive Maintenance
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Take-home message

Preventive Maintenance Predictive Maintenance Prescriptive Maintenance
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Take-home message

• Reinforcement learning is a promising alternative in 

maintenance domain, especially for prescriptive operation.



Thanks for your attention

Q&A



|

|Intelligent Maintenance Systems

48

Case study I : Power Allocation

[2]

• Dirichlet Soft Actor-Critic (DSAC) compared with the SOTA

• Soft Actor-Critic(SAC)

• Deep Deterministic Policy Gradient (DDPG)
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[2]
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Case study II : Real-time Model Calibration

[2]


